Metabolic: It is a mess!!! No, it should not be viewed as such because it could be approached logically and systematically as many other paediatric problems. To help in understanding it, inherited metabolic disorders can be simplified and divided into three main groups. Group 1 includes inborn errors of intermediary metabolism that give rise to an acute or chronic CNS intoxication. It encompasses aminoacidopathies, organic acidurias, urea cycle disorders and sugar intolerances. All the conditions in this group share clinical similarities: they do not interfere with the embryofetal development and they present acutely as progressive encephalopathy most often within neonatal period following a symptom-free interval. Sometimes the clinical manifestation may be delayed till late infancy to adulthood when a catabolic stress due to febrile illness, surgery etc may provoke the first acute metabolic attacks resulting in acute CNS symptoms. Diagnosis of this group of disorders relies on analyses of blood ammonia, acid-base status, blood lactate, urine ketones, plasma amino acid and urine organic acid. Most of these disorders are treatable and require the emergency removal of the toxin by cleansing drugs or dialysis; and long term treatment by special diets. Group 2 includes inborn errors of intermediary metabolism that affect the cytoplasmic and mitochondrial energetic processes resulting in reduced fasting tolerance. This includes glycogen storage disorders, fatty acid oxidations disorders and gluconeogenesis defects. The common presenting symptom is hypoglycemia. Treatment includes avoid fasting and adding glucose polymers and uncooked cornstarch to the diet. Group 3 involves cellular organelles and includes lysosomal, peroxisomal, mitochondrial respiratory chain disorders, glycosylation, and cholesterol synthesis defects. The clinical presentation is often chronic, progressive, multisystemic and developmental regression is common. Specialised tests are often required to make a definitive diagnosis. A few of these disorders can be treated by hematopoietic stem cell transplant, enzyme replacement, substrate reduction therapies etc. This talk will highlight how inherited metabolic disorders could be approached based on the presenting clinical problem using a set of diagnostic algorithms.